
A System for Assisting
Transformation
MARTIN S. FEATHER
University of Edinburgh

Program

Program transformation has been advocated as a potentially appropriate methodology for program
development. The ability to transform large programs is crucial to the practicality of such an
approach.

This paper describes research directed toward applying one particular transformation method to
problems of increasing scale. The method adopted is tha t developed by Burstall and Darlington, and
familiarity with their work is assumed.

The problems which arise when attempting transformation of larger scale programs are discussed,
and an approach to overcoming them is presented. Parts of the approach have been embodied in a
machine-based system which assists a user in transforming his programs. The approach, and the use
of this system, are illustrated by presenting portions of the transformation of a compiler for a "toy"
language.

Categories and Subject Descriptors: D.I.1. [P r o g r a m m i n g Techniques] : Applicative (Functional)
Programming; D.3.2 [P r o g r a m m i n g Languages] : Language Classifications--applicative languages;
D.3.4. [P r o g r a m m i n g Languages] : Processors--optimization; F.3.1 [Logics a n d M e a n i n g s of
P rog rams] : Specifying and Verifying and Reasoning about Programs

General Terms: Design, Languages

Additional Key Words and Phrases: program transformation, program development

1. INTRODUCTION

Motivated by the increasingly significant cost of software development and
maintenance in the computing environment, researchers have sought methodol-
ogies for program development. One such methodology that has been advocated
is that of program transformation {see, e.g., [1, 2, 10]). The application of program
transformation is not limited to assisting software development. Other areas
include

(1) investigating classes of algorithms (e.g., synthesis of several sorting algorithms
from a single specification [8], list-copying algorithms [19]);

(2) assisting program description and verification (e.g., proof of a list-copying
algorithm by developing it through transformation and proving the correct-
ness of each transformation step [21]);

(3) adapting existing programs (e.g., adaption and maintenance of mathematical
software packages [4]).

The British Science Research Council supported this research and provided computing facilities.
Author's address: USC/Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA
90291.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1982 ACM 0164-0925/82/0100-0001 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982, Pages 1-20.

2 Martin S. Feather

Our primary interest within this paper is directed only toward the application of
transformation to assist software development.

We adopt one particular transformation method, that developed by Burstall
and Darlington as presented in [6], and investigate its application to larger sized
examples. To keep this paper concise, we assume that the reader is familiar with

their work.
We have concentrated upon developing techniques for transforming nontrivial

programs and have embodied many of them in our transformation system ZAP.
As evidence that this has enabled us to tackle sizable transformations, we cite
our success in using ZAP to transform an entire text-formatting program.

In Section 2 we consider the implications of adopting Burstall and Darlington's
method as a basis for software development. In Section 3 we raise the issues
relevant to increasing the scale of programs to be transformed. Our approach and
system are described in Section 4; portions of our transformation of a compiler
for a "toy" language illustrate this. In Section 5 we review the approach and its
successes, limitations, and possible extensions.

2. IMPLICATIONS OF ADOPTING BURSTALL AND DARLINGTON'S
TRANSFORMATION METHOD

BurstaU and Darlington's method consists of the repeated application of a small
number of simple manipulations to recursion equations to produce modified

recursion equations.
Two immediate consequences of adopting their technique are that the program

to be transformed must be written in recursion equations and that, after trans-
formation, we are left with a program still in recursion equations (in particular,
without side-effects, assignment, etc.). The former implies a restriction on the
nature of the programs we may propose for transformation; the latter implies
that the end result of our transformations will typically require further processing
(outside the scope of this method) in order to obtain a program in some
conventional imperative language making use of iteration and destructive data
operations.

We point out that there is nevertheless a wide difference between the structure
of recursive programs proposed as specifications and the structure of the trans-
formed programs we emerge with. Our approach is to write a (very) straightfor-
ward algorithm to solve the problem in recursion equations, test this algorithm
on small examples, and, having satisfied ourselves that it exhibits the behavior
we desire, transform it with the intention of attaining a (typically grossly changed)
structure close to that of an efficient imperative solution.

The recursion equations formed the basis of a language, NPL, for which
Burstall implemented an interpreter ([5]). The spirit of NPL has since been
incorporated into a new language, HOPE, described in [7]. Our experience with
writing straightforward recursion equation programs has been encouraging; once
we have the programs syntactically correct, we find that they are usually seman-
tically correct.

Conversion of a purely applicative recursion equation program into an imper-
ative program is necessary to achieve two effects: first, to replace recursion with
iteration, and second, to make use of destructive operations to overwrite shared

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

A System for Assisting Program Transformation 3

data structures. Certainly, the task of performing such conversion is nontrivial,
hence fundamental to the viability of this particular approach. This falls outside
the scope of the work we have done. We might hope to achieve the first effect by
developing more sophisticated compilers (e.g., some LISP compilers are able to
convert tail recursion into iteration). Achieving the second effect is much harder;
we might apply different transformation techniques {e.g., [11]) or annotate
recursion equations with (mechanically verifiable) assertions which would be
sufficient to permit compile-time garbage collection {e.g., [23, 25]).

3. TACKLING LARGER SCALE TRANSFORMATIONS

Whatever transformation method we adopt, if our hope is to use transformation
for software development, we must face the issues which arise when we attempt
to tackle large-scale problems, including these:

(1) How rapidly does the effort required to transform grow with the scale of
the problem, and what can we do to minimize the impact of such growth?

(2) How confident are we in the correctness of our adopted transformation
method and the correctness of our application of it?

(3) Does the use of transformation help the process of software maintenance;
that is, if we make modifications to our initial program, must we reperform the
entire transformation process from scratch, or may we save some unnecessary
effort by reusing portions of the first transformation?

We consider the first two issues in the context of adopting Burstall and
Darlington's transformation method. The third issue is clearly of great practical
significance; however, we have not investigated very far in that direction.

The adopted transformation method consists of the repeated application of
small manipulations; hence, in increasing the scale of the program to be trans-
formed, we must necessarily perform a longer sequence of such manipulations. It
is readily apparent that we must find a better structure for our transformations
than merely long linear sequences. The approach we have developed has been to
structure the transformation hierarchically, each layer of the hierarchy expanding
into the next layer down, with the bottom layer being the linear sequence of
manipulations. At the highest layers we do this expansion by hand. Our transfor-
mation system, ZAP, takes over at an intermediate layer and completes the
expansion down to manipulation sequences. Thus there are two inputs to ZAP:
the simple program serving as specification and the sequence of commands to
direct its transformation. We call the sequence of commands a "metaprogram"
{since it tells the system how to transform a program). The output is the
transformed program; see Figure 1. We wish to stress the existence of metapro-
grams as manipulable objects. A metaprogram may serve as documentation of
how efficiency has been introduced into the transformed program. Retaining a
metaprogram allows us to repeat the transformation; modifying a metaprogram
allows us to modify the implementation without altering its functional behavior.
In the case of a modification to the specification, we may be able to reuse the
same metaprogram or see how to adjust it to transform the adjusted specification.
The emphasis in the design of ZAP has been to use metaprograms to improve
communication between user and system, so that the user can be in control of

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

4 Martin S. Feather

S Specification
I (simple recursionJ
~. equation prograrn)~

Metaprog ram %
(sequence of commands)~//

/
izAP .steml

(tran,forme, program)
Fig. 1. Inpu t and ou t pu t of ZAP.

the transformation but can say what he has in mind in a suitably pithy way. In
this respect we have taken a very different direction from the more automatic
and heuristic approach embodied in Darlington's system [9] and in Manna and
Waldinger's DEDALUS system [20].

Provided our hierarchical approach is only permitted to make changes to
programs by descending to the level of applying manipulations, we may limit our
concern to the correctness of our implementation of these manipulations and to
their theoretical correctness. It is clear that Burstall and Darlington's manipula-
tions preserve partial correctness; total correctness is not assured--we may lose
termination. In practice, this does not appear to be a danger. Should we wish to
be certain, we might seek to prove termination formally. Alternatively, we might
try to show that our particular sequence of manipulations is guaranteed to
preserve termination. Kott [18] has investigated this latter approach.

4. APPROACH TO TRANSFORMATION

In this section we describe our approach to transformation. The features of our
approach are illustrated by means of small examples, and where appropriate by
presenting their application to performing transformation of a sizable program.
Before considering transformation, we introduce the problem serving as the
sizable example and briefly describe our construction of a simple recursion-
equation program to serve as the specification.

4.1 The Example Problem

Our task is to produce part of a compiler for a 'itoy" language: the part to convert
abstract syntax trees into machine code. We choose a very simple language with
the following constructs:

Statements: assignment;
while-loop;
if-then-else;
block (headed by local variable declarations).

Expressions: variable;
operator applied to a list of expressions.

Our task is very easy; we do not even have procedures or functions within our
language. Nevertheless, we are faced with a representative class of compiling
problems: evaluating expressions, coding loops and conditionals, and identifying
the correct incarnation of local variables defined in blocks.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

A System for Assisting Program Transformation 5

Compile

AssembleJ/ ~ ' ~
/

Remove-Variables

Remove-Variables
-From-Stmt

Remove-Variables
-From-Expr

It
Remove-Variables
-From-List-Expr

\
FormiAssembler

Form-Assembler
-From-Stmt

Form-Assembler
-F rom-Exp r

It
Form-Assembler
-F rom-List-Expr

Remove- Labe 1 s

etc . . .

Fig. 2. S t ruc tu re of initial program.

We assume a stack machine with the following instructions:

load to load a value from an address onto the stack;
store to pop the value from the stack and store it in an address;
jump to jump to an address;
conditional jump to pop the value from the stack and jump only if that value

represents "true";
apply to apply an operator, which causes enough values to be popped

off the stack and the answer to be pushed on;
nonop to do nothing.

4.2 The Initial Program

Our philosophy for design of the initial program is to split the task into simpler
subtasks which communicate with each other in a straightforward manner. Each
subtask is further divided until we reach trivial operations for which we can
confidently write functions to carry them out. For our compilation problem we
are led to an initial program with the structure shown in Figure 2. The overall
task is split into two subtasks: first, form assembly code (which will be akin to
machine code but for the use of labels instead of explicit locations) from the
incoming source statement, and second, replace jumps to labels with jumps to
locations in order to obtain machine code from our intermediate assembly code.
The first subtask breaks down further into replacing variables within the incoming
source statements by locations and then from this forming assembly code to
perform each statement's action. The breakdown of the problem continues in this
fashion.

We can see that the outcome will be a multipass program, where each pass
does some simple activity and communication between the passes is by the
handing over of a bulky but conceptually simple data structure. Thus our
specification structure models a conceptual breakdown of the task, far removed
from the structure an efficient solution to the problem would exhibit. Our
transformation techniques must find the path between the two.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

6 • Martin S. Feather

4.3 Transformat ion

Having described the problem, we may now consider how to perform the trans-
formation. When faced with a program of the scale of this compiler, we must plan
our approach to its transformation. As outlined earlier, we take a hierarchical
approach to structuring the transformation activity. We call the highest level of
our hierarchical organization the "strategy" level.

4.3.1 Transformation Strategies. Much of the benefit of following a strategy
comes from having organized the overall transformation process in a comprehen-
sible manner: during its execution we are better able to gauge our progress, keep
track of our objectives, and draw parallels between similar portions of the
transformation.

The transformation strategy we have applied to the compiler problem and
other examples is a "bottom-up" strategy based on the program structure; we
first transform the lowest level functions, then transform the functions that make
use of them, and so on. We have not had sufficient experience with other
strategies to suggest that this bottom-up strategy is in general better (or even as
good as) any other. This strategy has proven reasonably robust, insofar as on all
but one occasion {during the transformation of the largest example we have
tackled) we have been able to follow it through the entire transformation.

With respect to the compiler example, we concentrate our attention on only a
portion of the entire transformation plan: that part dealing with Assemble. The
strategy suggests that we first improve the functions it makes use of before
tackling it itself. Similarly, we would separately transform Remove-Labels and
then be in a position to tackle Compile, which makes use of both of these.

The consideration of transformations to improve individual functions takes us
down to the next level in our hierarchy, that of transformation "tactics." The
transformation system as implemented does not provide any support for produc-
tion of strategies or their expansion into tactics. Despite the lack of such support,
we have nevertheless found it beneficial to work downward all the way from this
strategy level, expending manual effort to do so.

4.3.2 Transformation Tactics. At this level the task is to transform an individ-
ual function. The scope of the problem has been narrowed to the structure of
that function and its use of other functions. We need not consider the context in
which it is used, nor {ideally) the entire structure of the functions it uses.

We have found three tactics to be of use frequently; we call them "combining,"
"tupling," and "generalizing." They are as follows:

The Combining Tactic. This tactic is applicable when the body of the function
under consideration contains nested function calls. Its action is first to replace
these nested c,ll.q with a call to a single (possibly new) function, defined as the
nested combination, and then to transform the new function to obtain an
immediately recursive definition. The following trivial example serves to illustrate
this tactic.

Example. Suppose we are concerned with a function whose definition contains

Sum(Squares(NUMLIST))

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

A System for Assisting Program Transformation 7

where Sum and Squares are defined by

Sum(nil) <= 0
Sum(cons(N,NUMLIST)) <= N + Sum(NUMLIST)

Squares(nil) <= ni l
Squares(cons(N,NUMLIST)) <= cons(N*N,Squares(NUMLIST))

Then the combining tactic suggests we define a new function:

I SumSquares(L) <: Sum(Squares(L)) I

Using this, we replace the nested call in the original expression by

SumSquares(NUMLIST)

and then transform SumSquares to obtain

I SumSquares(nil) <: 0
SumSquares(cons(N,L)) <= N*N + SumSquares(L)

The efficiency improvements result from having replaced two function calls by
a single call and having completely eliminated the construction and subsequent
consumption of the data structure intermediate to the nested function calls.

In our compiler example, this tactic would be applicable when seeking to
transform Assemble, since the defmition of Assemble is

i Assemble(STMT,ADR)
<= Form-Assemble r(Remove-Variables(STMT, ADR)) I

In this case there is no need to define a new function, since the body of Assemble
is the nested function call. We would transform Assemble to derive a recursive
version not making use of Form-Assembler or Remove-Variables.

In general, we may have many nested function calls, for example,

Funl(Fun2(... Fun.(. . .) . . .)) ,

in which case we might attempt to combine them all at once or, less ambitiously,
combine them incrementally.

The Tupling Tactic. This tactic is applicable when the body of the function
under consideration contains separate (nonnested) calls to two or more functions,
with the calls sharing argument(s). Its action is first to replace these separate
calls with a single call to a (possibly new) function defined to return as a result a
tuple of the results of the separate calls, and then to transform the new function
to obtain an immediately recursive definition. Pettorossi [24] examines this tactic
and its implications for efficiency improvement in some detail. This tactic is used
during transformation of our compiler program, although not in the portion we
examine.

The Generalizing Tactic. This tactic may be applied on any occasion where
there is a function call. Its action is to replace the call with a call to a {possibly
new) more general function. The benefit of applying this tactic is realized when
the original function does not admit to improvement but the more general

A(~M Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

8 Martin S. Feather

function does. Reference [6, app. 1] presents a good example of this. We see a
trivial application of this tactic during the compiler program's transformation in
the next section.

We draw an analogy with theorem proving, where the strengthening of an
induction hypothesis is necessary to permit completion of an inductive proof. Not
surprisingly, it is much harder to decide when (and how!) to apply the general-
ization tactic than the other tactics.

The above tactics have all been recognized as techniques for use in program
transformation by other researchers:

(1) combining (also called "functional composition"): [6, 22];
(2) tupling (also "pairing," "functional combination"): [3, 6, 15];
(3) generalizing (also "embedding"): [3, 6, 27].

Consideration of implementing the tactics takes us down to the next level in
our hierarchy, that of "pattern-directed" transformations. It is from this point
that the ZAP system takes over the work: pattern-directed transformations are
expressed as commands to the system, to be expanded into the appropriate
manipulations. In practice, it is the task of realizing tactics with pattern-directed
transformations that consumes much of the user's time and effort in a transfor-
mation; hence, any further development of the system would best be concentrated
here.

4.3.3 Pattern-Directed Transformations. At this level the task is to carry out
the actions suggested by a tactic. The ultimate objective (which we are nearing)
is to implement them as linear sequences of manipulations. This level serves as
an intermediary between tactics and manipulations.

The two main features of this level are

(1) a mechanism to limit the context of the transformation and
(2) a mechanism to express the objective of the transformation.

These are fully supported by commands to the transformation system. We present
these by giving a small example, followed by a look at their application in the
transformation of the compiler. The expansion process down to manipulation
sequences is discussed in Section 4.3.4.

Returning to the Sum(Squares(NUMLIST)) example, we may be dealing with
some function (Foo, say) of the form

F o o (N U M L I S T) < = . . . S u m (S q u a r e s (N U M L I S T))

We want to create a new function to be used in place of the nested call. The
commands we would issue to our system to do this are as follows:

CONTEXT
UNFOLD Foo
USING RESTRICTED Sum Squares
TRANSFORM

GOAL Foo(NUMLIST) <= $$(&&SumSquares(NUMLIST))
END

END

ACM Transactions on Programming Languages and Systems, Vol. 4, No. l, January 1982.

A System for Assisting Program Transformation 9

C O N T E X T . . . END establishes the context in which the t ransformation takes
place.

UNFOLD Foo states tha t the equation for Foo is to be used for unfolding.
Occasionally, we wish to use for unfolding the equations for a function and all the
functions tha t are made use of, directly or indirectly, by tha t function. To achieve
this we would use the UNFOLDALL command ra ther than UNFOLD. Thus,
UNFOLDALL Foo would state tha t the equations of Foo, Sum, S u m S q u a r e s , . ,
and + be used for unfolding.

USING RESTRICTED Sum Squares states tha t functions Sum and Squares
may occur in any new function's definition.

TRANSFORM . . . END contains transformation(s) to be performed within the
established context. Each t ransformation is expressed as a GOAL, consisting of

,~ , , .
two portions separated by < = , the left-hand side is the expression to be
transformed, and the r ight-hand side, which we call a "pat tern ," is an approxi-
mat ion of the answer sought. The strange symbols "$$" and "&&" permit us to
write approximations. "&&" prefixes the name we wish to give to our new function,
and its occurrence marks the position where we want a call to tha t new func-
tion. "$$" marks an arbi t rary port ion of the expression, with some restric-
tions; in particular, it may not s tand in place of any functions declared as
USING RESTRICTED.

The effects of these commands are to cause the new function SumSquares to
be defined (and its type declaration made) and Foo's definition to be modified to
make use of it.

Next, we want to t ransform SumSquares itself; this we do as follows:

CONTEXT
]JNFOLD SumSquares Sum Squares
USING SumSquares
TRANSFORM

GOAL SumSquares(nil) <= 0
GOAL SumSquares(cons(N,L)) <= $$(N,SumSquares(L))

END
E N___~D

This states tha t within the defined context we unfold definitions of SumSquares,
Sum, and Squares. USING declares which of the functions being used for
unfolding (in this case, SumSquares) may occur in the t ransformed expression.
(The implications of USING and USING RESTRICTED may appear arbitrary.
Our only defense is tha t in practice they provide the desired effects.)

The T R A N S F O R M . . . END block contains two GOALs, corresponding to
the cases into which we wish to split the definition of SumSquares . The first,
GOAL SumSquares(nil) < = O, is the "base case" for our recursive defini-
t ion of SumSquares . In situations where the pa t te rn is a trivial expression
(e.g., a constant, as here) there is no need to provide it; the goal could have
been expressed simply as GOAL SumSquares(nil). The second, GOAL
SumSquares(cons(N, L)) < = $$(N, SumSquares(L)), corresponds to the recursive
case for SumSquares . The provided pat tern expresses our wish for an answer
somehow involving N and a recursive call SurnSquares(L).

Now we consider how to apply these mechanisms to a port ion of the compiler

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

10 Martirl S. Feather

transformation, the transformation of Assemble. At this point we must introduce
some data definitions and function definitions.

The data definitions of objects to represent abstract syntax and machine code
are given in Figure 3.

There exist analogous definitions for source-statement' and expression', which
differ only in having explicit addresses in place of variables.

The relevant function definitions are

A s s e m b l e : sout~e-slolemenl x addr~s -> listassembler

Assemble(STMT,AOR) <= Form-Assembler(Remove-Variables(STMT,ADR))

Remove-Variables :souse-statement x oddr~s -> sou~e-slaleme/zl"

Remove-Variables(STMT,ADR)
<= Remove-Variables-From-Stmt(STMT,Empty-Env(ADR))

Form-Assembler : sou~e-slatement'-> l~tQssembier

Form-Assembler(STMT') <= Form-Assembler-From-Stmt(STMT',InitiaILabel)

In the above, the second parameter of Remove-Variables-From-Stmt is an envi-
ronment: a data structure containing a mapping from variable names to addresses
and the address in store (ADR) from which to allocate space for new variables
declared in source statement STMT; Empty-Env(ADR) constructs an initially
empty environment. The second parameter of Form-Assembler-From-Statement
is a label from which unique new labels are constructed when required.

The transformation we wish to perform is to improve Assemble by combining
Form-Assembler and Remove-Variables, in a fashion similar to the combination
of Sum and Squares in our earlier example. Since Form-Assembler and Remove-
Variables each make a call on a more general function (Form-Assembler-From-
Strut and Remove-Variables-From-Stmt, respectively), our first step is to gener-
alize Assemble, defining a new function Assemble-Stmt:

CONTEXT
UNFOLDALL Assemble
USING Empty-Env In i t ia lLabel
USING RESTRICTED Form-Assembler-From-Stmt

Remove-Variables-From-Stmt
TRANSFORM

GOAL Assemble(STMT,ADR) <=
$$(&&Assemble-Stmt(STMT,Empty-Env(ADR),InitiaILabel))

END
END

This modifies Assemble and produces the definition

Assemble-Stmt :sou~e-statemem x environment x Nbel - > l~tagembler

Assemble-Stmt(STMT,ENV,kAg)
<= Form-Assembler-From-Stmt(

Remove-Variables-From-Stmt(STMT,ENV),LAB)

Observe that Empty-Env(ADR) has been generalized to ENV (a variable of type
environment), and InitialLabel to LAB (a variable of type label).

Essentially, we have generalized the combination of Form-Assembler and
Remove-Variables to the combination of Form-Assembler-From-Stmt and Re-

ACM Transact ions on Programming Languages and Systems, Vol. 4, No. 1, J a n u a r y 1982.

A System for Assisting Program Transformation 11

expression <= e x p r (v a r i a b l e) ++ a p p l i c a t i o n (o p e r a t o r , l i s t express ion)

source-Malemen! <= as s i g nme n t (variable , expression)
++ w h i l e - l o o p (e x p r e s s i o n , source-s ta tement)
++ i f - t h e n - e l s e (e x p r e s s i o n , source-s ta tement ,

source-s tatement)
++ b l o c k (list variable , wurce - s ta t emen t)
++ source-s tatement $ souwe-s ta temenl ;

assembler <= l o a d (a d d r e s s) ++ s t o r e (a d d r e s s) ++ j u m p (l a b e l)
++ j u m p o n t r u e (l a b e l) ++ a p p l y (o p e r a t o r) ++

+ 1 a b e 1 1 e d - a s s e mb 1 e r (label , a s sembler)
nonop

Fig. 3. Notation: To the left of the "< = " is the data type being defined, and to
the right, separated by "Jr Jr", are the cases of its definition, giving the constructor
function for each. For example, l i s t a < = nil Jr Jr cons(a, l i s t a) . Also, "$" is

being used as an infix constructor.

move-Variables-From-Stmt. N o w we transform Assemble-Stmt to obtain a recur-
sive definition not making use of either of these (similar to the transformation of
SumSquares following its introduction). To follow some of the results of this, we
must show more details of the specification:

R e m o v e - V a r i a b l e s - F r o m - S t m t : SouEe-sla/eme/ l l x envi/~m/tet~(-> 5ource-Shzlemell/"

Remove-Variables-From-Stmt(assignment(V,EXPR),ENV)
<= assignment'(Lookup(V,ENV),

Remove-Variables-From-Expr(EXPR,ENV))

(and so on for the other cases of source-s tatement)

Form-Assembler-From-Stmt : s o u w e - s l a t e m e n t ' x ~ b e l -> l i s tassembler I

Form-Assembler-From-Stmt(assignment'(ADR,EXPR,),LAB)

I <= Append(Form-Assembler-From-Expr(EXPR,), store(ADR))

(and so on for the other cases of source-slatemenl')

To do the transformation, we give a GOAL for each case of s o u r c e - s t a t e m e n t
that could be an argument to Assemble-Stmt (analogous to giving a GOAL for
each of the cases of a list of numbers that could be an argument to SumSquares) .
For example, for the case assignment(V, EXPR) (where V is a variable, EXPR an
expression) we give (within the appropriate CONTEXT):

] GOAL Assemble-Stmt(assignment(V,EXPR),ENV,LAB) 1
<= $$(&&Assemble-Exp r(EXPR, ENV) ,V, ENV)

Note that this will lead to the introduction of another new function, Assemble-
Expr, which in turn must be transformed.

Continuing this process leads to definitions of Assemble-Stmt, Assemble-Expr,
and Assemble-List-Expr such that variable removal and formation of assembler
code are now done simultaneously (avoiding the generation of the intermediate
structure of source code with variables replaced by addresses), the behavior we
sought from this optimization.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

12 Martin S. Feather

The equations specifying each of the new functions are these:

Assemble-Stmt(STMT,ENV,LAB)
<: Form-Assembler-From-Stmt(Remove-Variables-From-Stmt(STMT,ENV),LAB)

Assemble-Expr(EXPR,ENV) <= Form-Assembler-From-Expr(Remove-Variables-From-Expr(EXPR,ENV))

Assemble-List-Expr(EXPR-LIST,ENV)
<= Form-Assembler-From-List-Expr(

Remove-Variables-From-List-E×pr(EXPR-LIST,ENV))

Their transformed equations are

I
Aisemble-Stmt(assignment(V,EXPR),ENV,LAB) <= Append(Assemble-Expr(EXPR,ENV), store(Lookup(V,ENV)))

and so on f o r t h e o t h e r cases o f sou~ve-statement)

Assemble-Expr(expr(VAR),ENV) <= cons(load(Lookup(VAR,ENV)),nil)
Assemble-Expr(application(OPER,EXPR-LIST),ENV)

<= Append(Assemble-List-Expr(EXPR-LIST,ENV),cons(apply(OPER),nil))

Assemble-List-Expr(nil,ENV) <= nil)',I 1
Assemble-List-Expr(cons(EXPR,EXPR-LIST),ENV)

<= Append(Assemble-Expr(EXPR,ENV),Assemble-List-Expr(EXPR-LIST,ENV)

4.3.4 Linear Sequences of Manipulations. We have stated all along that the
bottom layer of our transformation hierarchy consists of the linear sequence of
manipulations which actually make the changes to the recursion equations. Here
we consider how the ZAP system performs the expansion from the pattern-
directed transformation commands into such manipulation sequences.

The transformation GOALs consist of a left-hand side, the expression to be
transformed, and a right-hand side, the pattern which expresses the answer
sought. In the trivial case of no pattern being provided, the left-hand side is fully
unfolded, and, provided the resulting expression is sufficiently trivial (we do not
go into the precise meaning of this), it serves as the answer; the manipulation
sequence is thus the sequence of unfold manipulations used to do the unfolding.

To understand what happens when a pattern is provided, first consider the
simple case of no uses of "$$" or "&&". The system unfolds both the left-hand
side and the pattern as far as possible. If these expand to identical expressions,
then the pattern is a valid answer; the manipulation sequence is the sequence of
"unfold" manipulations to unfold the left-hand side, followed by the inverse of
the sequence of"unfold" manipulations used to unfold the pattern (i.e., a sequence
of "fold" manipulations). An example is given in Figure 4.

The use of"$$" and "&&" within patterns is supported by replacing the equality
test (between expanded left-hand side and expanded pattern} with a pattern
match, where "$$" and "&&" are the pattern variables. The bindings formed in
the match are used to instantiate the pattern, giving the exact pattern which,
when expanded, equals the expanded left-hand side. See Figure 5. Here, the

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

A System for Assisting Program Transformation 13

left-hand s i d e pattern

SumSquares(cons(N,L))
unfoM SumSquares

Sum(Squares(cons(N,L)))
$ up~oM Squares

Sum(cons((N*N),Squares(L)))
$ u,~oM Sum

(N'N) + Sum(Squares(L)) =

(N'N) + SumSquares(L)

1' unfold SumSquares

(N'N) + Sum(Squares(L))

Manipulation sequence:

Su.mSquares(cons(N,L))

unfold SumSquares Sum(Squares(cons(N,L))

uJ~old Squares Sum(cons((N*N),Squares(L)))

unfoM Sum (N'N) + Sum(Squares(L))

fold SumSquares (N'N) + SumSquares(L)

Figure 4

left-hand side pattern

SumSquares(cons(N,L)) $$(N,SumSquares(L))

(N'N) + Sum(Squares(L)) $$(N,Sum(Squares(L))
match

Figure 5

match binds $$ to)~ a b . (a * a) + b, and instantiating the pattern gives
(N * N) + SumSquares(L).

The final extension of this process is to make the match take into account
declared properties of associativity and commutativity. If the matcher makes use
of such properties, this corresponds to the application of the appropriate lemmas
in the manipulation sequence. For example, suppose we declare "+" to be
commutative and have the situation depicted in Figure 6. These are equal up to
commutativity of "+"; so the manipulation sequence is as given in Figure 7.

Inspiration for inclusion of this last feature derives from Topor's matcher in his
interactive verification system [26].

If we look at a portion of the compiler transformation, we see how much detail
is captured by a GOAL step. Figure 8 gives the manipulation sequence ZAP
generates to achieve the transformation expressed by

GOAL Assemble-List-Expr(cons(EXPR,EXPR-LIST),ENV) <=
$$(Assemble-Expr(EXPR-LIST,ENV),Assemble-List-Expr(EXPR_LIST,ENV)

(part of the transformations of Section 4.3.3).
In truth, our system never actually extrudes the manipulation sequences

justifying its activities, since we always construct and examine transformations at
the higher (and more amenable) levels of our hierarchy.

ACM "l~ansactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

14 Martin S. Feather

left-hand side pattern

SumSquares(cons(N,L)) SumSquares(L) + (N'N)

/Sum(Squares(L)) + (N'N) (N'N) + Sum(Squares(L)) ~ m a t c h ~

Figure 6

us~oM SumSquares

unfoM Squares.

m~oM Sum

app,' commutativity of "+"

foM SumSquares

SumSquares(cons(N,L))

Sum(Square.s(cons(N,L)))

Sum(cons((N*N),Squares(L)))

(N'N) + Sum(Squares(L))

Sum(Squares(L)) + (N'N)

SumSquares(L) + (N'N)

Figure 7

Assemble-List-Expr(cons(EXPR,EXPR-LIST),ENV)

~ unfold Assemble-List-Expr

Form-Assembler-From-List-Expr(Remove-Variables-From
-List-ExDr(cons(EXPR,EXPR-LIST),ENV))

~unfold Remove-Variables-From-List-Expr

Append(F.orm-Assembler-From-Expr(Remove-Variables-From-Expr(EXPR,ENV)),
Form-Assembler-From-List-Expr(Remove-Variables

-From-List-Expr(EXPR-LIST,ENV)))

~Lfold Assemble-Expr

Append(Assemble-Expr(EXPR,ENV),
Form-Assembler-From-List-Expr(Remove-Variables

-From-Lis~-Exp£(EXPR-LIST,ENV)))

~fold Assemble-List-Expr

Append(Assemble-Expr(EXPR,ENV),Assemble-List-Expr(EXPR-LIST,ENV))

Figure 8

4.4 Transformed Program

At the end of our entire transformation we emerge with a two-pass compiler
program, still in recursion equations. The first pass converts source statements
into assembler code and, simultaneously, constructs a mapping from labels to
corresponding addresses. In the second pass the mapping is used to replace jumps
to labels with jumps to explicit addresses, producing the final machine code.

When we convert to an imperative language, we might take advantage of side
effects to combine these two passes into a single pass which destructively replaces
(on the fly) forward referencing labels by addresses. The major change from

ACM Transactions on Programming Languages and Systems, Vol. 4, No. I, January 1982.

A System for Assisting Program Transformation 15

initial program (simple, modular, and multipass in nature) to final program has
been accomplished by our transformation techniques.

5. REVIEW OF THE APPROACH

At this point we look over our approach, describe some enhancements to it (both
incorporated and planned), and, finally, discuss the significant difficulties we
foresee.

Figure 9 shows the hierarchical structure we use for transformation. Most of
the effort the user must provide is in expanding transformation tactics into
pattern-directed transformations, in the form of commands to ZAP. Some special
devices have been incorporated into the system to support this operation.

5.1 Enhancements

The enhancements to ZAP in the form of special devices are designed to be used
in commonly occurring, relatively straightforward transformations. They produce
the left-hand sides of GOALs to transform a function, and simple recursive
patterns to serve as entire patterns (or portions of patterns) of GOALs. They are
called into action by the inclusion of keywords within the pattern-directed
transformations.

5.1.1 Producing the Left-Hand Sides of GOALs. This special device generates
the left-hand sides of GOALs to transform a function, using the data declarations
of the type(s) of the argument(s) within the left-hand side to construct the cases.
For example, to transform Sumsquares, we may write

GOAL SumSquares (CASESOF NUMLIST) <

to direct the system to generate the cases for the arguments of SumSquares. To
do this expansion, the system examines the data declaration for the type of the
argument; here the type is list number, an instance of the parameterized type list
a, with data definition

l i s t a < = nil + + cons(a, l i s t a).

Each of the cases of the data definition's right-hand side suggests a case for the
left-hand side of a GOAL,

SumSquares(nil);
SumSquares(cons(N, NUMLIST)).

5.1.2 Producing Simple Recursive Patterns. This special device generates
simple recursive patterns to serve as entire patterns (or portions of patterns) of
GOALs. As with the device to generate cases, the data declaration serves to
provide the necessary information. For example, in transforming Sumsquares we
have a goal with left-hand side

SumSquares(cons(N, NUMLIST)).

From the data definition of lists,

l i s t a < = nil ++ cons(a, l i s t a),

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

16 Martin S. Feather

Transformation Strategy

h a n d - e x p a n d e d

Transformation Tactics

hand-expanded with
some machine assistance

Pattern-directed Transformations (expressed as user commands

automaticaIly expanded
by ZAP system

Manipulation Sequences

Fig. 9. O u r t r a n s f o r m a t i o n hmrarchy.

to ZAP)

the special device deduces that in dealing with a function call of the form
Foo(cons(a, a-list)) a simple recursive call would be Foo(a-list). In our example
this instantiates to

SumSquares(NUMLIST).

If the pattern of a goal contains the keyword AUTO (mnemonic for AUTO-
matic), this is replaced by a simple pattern, $$ with arguments the recursive call
found in the above manner, together with all the free variables of the left-hand
side. So

GOAL SumSquares(cons(N, NUMLIST)) < = AUTO

is expanded to

GOAL SumSquares(cons(N, NUMLIST))
<-- $$(N, NUMLIST, SumSquares(NUMLIST)).

J ~ J
Y Y

free variables recursive call
of left-hand side

We may use this in our compiler example; for example,

GOAL Assemble-List-Expr(cons(EXPR, EXPR-LIST), ENV)
<-- $$(Assemble-Expr(EXPR, ENV), AUTO).

AUTO expands to include a simple recursive call to Assemble-List-Expr, and
the pattern produced is

$$(Assemble-Expr(EXPR, ENV),
$$(EXPR, EXPR-LIST, ENV, Assemble-List-Expr(EXPR-LIST))).

Note that, although this is more general than the pattern we would have typed
in by hand (because it contains some unnecessary variables), the transformation
has the same effect.

The CASESOF and AIJTO devices may be used in conjunction; for example,

GOAL SumSquares(CASESOF NUMLIST) <-- AUTO

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

A System for Assisting Program Transformation 17

expands to

GOAL SumSquares(nil) <- - $$0
GOAL SumSquares(cons(N, NUMLIST))

< = $$(N, NUMLIST, SumSquares(NUMLIST)).

5.1.3 Motivation for Nature of Enhancements. Our motivation for the inclu-
sion and method of activation of these devices comes from the observation that
often, during expansion of a tactic into pattern-directed transformations, very
simple cases and patterns are required. These we sought to automate, so that the
user would be freed to concentrate upon the more complex portions where his
intelligence is needed. We still require the user to activate them (rather than
always attempting to apply them), reasoning that this gives the user the appro-
priate degree of control. Furthermore, it is easy for the user to override them
should they fail.

We would like to see further development of the system fit into this framework.
For example, we might automate expansion of our simple strategy so that, given
a program to transform, the system suggests a sequence of tactics to implement
that strategy; the user could then follow that sequence, perhaps modifying it
slightly where his insight suggested necessary divergences.

5.2 Other Transformations

Two other sizable transformations (in the same class of problems as the compiler
example) that we have performed with the aid of our system are these:

(1) The Telegram Problem (from [16]). This problem involves decoding an
incoming stream of characters representing telegrams and amassing statistics
about the telegrams. This problem served as the first major example upon which
we developed our approach and system. Reference [14] discusses the transfor-
mation. The scale of the problem (judged in terms of number of recursion
equations defining the initial program) was about half the size of the compiler
example (some 30 equations as compared to 60).

(2) A Text Formatter. We adopted the formatter described in [17, chap. 7].
This program takes as input text interspersed with commands to direct the layout
of that text. Typical formatting operations, such as filling and justifying lines to
align the right margin, centering text between margins, providing page numbers
and titles, etc., are supported. We wrote a recursion equation program to perform
all their formatting operations but concentrated on structuring the program in as
straightforward a manner as possible. Our resulting program was really very
different from, and much simpler than, Kernighan and Plauger's. See [12] for
details of this specification. In terms of scale this was much larger than the
compiler example (over 200 equations). In terms of difficulty of carrying out the
transformation, the effort required had grown more than linearly with the number
of equations. In retrospect we see that the difficulties were already present in the
transformation of the compiler; however, its smaller scale made them relatively
innocuous. What these difficulties were we consider next. In spite of the difficul-
ties, we were successful in completing the transformation of this sizable program.
We believe this to be the largest machine-assured transformation carried out to
date.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

18 Martin S. Feather

Fo rm-Assemb I e r -F r o m - S t m t

Form-Assembl e r -F rom-Exp r

S t
Fo rm-Assembl e r -F r o m - L i s t - E x p r

R e m o v e - V a r i a b l es -F rom-S tmt
$

R e m o v e - V a r i a b l es -F rom-Exp r

R e m o v e - V a r i a b l e s - F r o m - L i s t - E x p r

Assembl e - S t m t
$

Assembl e - E x p r
~ f

A s s e m b l e - L i s t - E x p r

Figu re 10

5.3 Difficulties

We have already pointed out that the expansion from tactics to pattern-directed
transformations consumes most of our effort. Disturbingly, the effort required
seems to be growing faster than the scale of the programs we are transforming.
Of course, programming effort in following conventional development methods
also increases nonlinearly with the size of the program.

We identify several sources of difficulty encountered during transformation in
the following subsections.

5.3.1 Weakness of Patterns. Although we may include within our patterns
variables ($$ and &&) to abstract away some of the detail, as the recursion
equations get larger and more complex (as is the case during longer transforma-
tions) we still find ourselves having to construct larger and more complex patterns.
To overcome this, we might

(1) extend the enhancements to provide more system-generated portions to be
included in patterns or

(2) make our patterns more general so as to be able to abstract away more of the
detail when describing the desired goal of a transformation. We have only
begun to consider how this might best be done.

5.3.2 Repeated Structure of Transformation. Examining a portion of the com-
piler transformation (Section 4.3.3), we can see a similarity between the structure
of the initial recursion equations and the structure we transform into; see Fig-
ure 10.

In writing pattern-directed transformations we are forced to repeat this struc-
ture by hand--an annoying situation that tends to occur repeatedly within larger
transformations. Clearly, there is need for some mechanism to abstract out the
algorithmic structure which we can then use to assist in generation of transfor-
mation commands. Such a mechanism should integrate well with the CASESOF
and AUTO devices.

5.3.3 Sensitivity of Tactics to the Structure of Functions. At the tactics level
our hope was that the expansion of tactics would not depend crucially upon the
entire structure of the recursive functions. In examining the compiler transfor-
mation we see that the application of the tactic to combine Assemble and
Remove-Labels in fact did depend crucially on the way in which these functions

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

A System for Assisting Program Transformation • 19

called other lower level functions. In fact, our very first action was to perform a
simple generalization: the application of a tactic not predicted at the strategy
level. We might consider this an omission due to naivet~ when expanding strategy
into tactics or, alternatively, conclude that in expanding tactics we might generate
further applications of tactics. Clearly, the algorithmic structure is important in
our transformation process. As we increase the scale and complexity of programs
to be transformed, the algorithmic structure becomes deeper and more complex,
and we observe this phenomenon more and more.

6 CONCLUSIONS

We have presented an approach to applying a transformation method to programs
of increasing scale. Our experience in performing several sizable transformations
has demonstrated success in this regard. We have identified areas where our
techniques require improvement and have made some suggestions as to how this
might be done. In addition to continuing investigations into performing larger
and more complex transformations, we see wide scope for investigating how
transformation might assist in program modification and maintenance. To com-
plete the viability of our approach, we recognize the need for further research
into the conversion of applicative programs into imperative programs making use
of destructive operations on appropriate data structures. Further detail about the
work described here may be found in [13].

ACKNOWLEDGMENTS

We would like to thank all our past colleagues at the Department of Artificial
Intelligence, University of Edinburgh, for their help, and in particular Rod
Burstall and John Darlington for providing the Original inspiration and continuing
encouragement and assistance throughout. The referees provided valuable and
penetrating comments and suggestions.

REFERENCES

1. BALZER, R., GOLDMAN, N., AND WILE, D. On the transformational implementation approach to
programming. In Proc. 2d Int. Conf. Software Engineering, San Francisco, Calif., Oct. 1976, pp.
337-344.

2. BAUER, F.L., PARTSCH, H., PEPPER, P., AND WOSSNER, H. Techniques for program development.
In Infotech State of the Art Report: Software Engineering Techniques. Infotech Information
Ltd., Maidenhead, Berkshire, England, 1977, pp. 25-50.

3. BAUER, F.L., PARTSCH, H., PEPPER, P., AND WOSSNER, H. Notes on the project CIP: Outline of
a transformation system. Tech. Rep. TUM-INFO-7729, Inst. fiJr Informatik, Technische Univ.
Miinchen, 1977.

4. BOYLE, J.M. Program adaption and program transformation. In Practice in Software Adaption
and Maintenance: Proceedings, Workshop on Software Adaption and Maintenance, Berlin.
Elsevier North-Holland, New York, 1979, pp. 3-20.

5. BURSTALL, R.M. Design considerations for a functional programming language. In The Software
Revolution: Proc. Infotech State of the Art Conference, Copenhagen. Pergamon Press, Elmsford,
N.Y., 1977, pp. 45-57.

6. BURSTALL, R.M., AND DARLINGTON, J. A transformation system for developing recursive pro-
grams. J. ACM 24, 1 (Jan. 1977), 44-67.

7. BURSTALL, R.M., MACQUEEN, D.B., AnD SANNELLA, D.T. HOPE: An experimental applicative
language. In Proc. 1980 LISP Conf., Stanford, Calif., 1980, pp. 136-143.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

20 Martin S. Feather

8. DARLINGTON, J. A synthesis of several sorting algorithms. Acta Inf. 11, 1 (Dec. 1978), 1-30.
9. DARLINGTON, J. Program transformation and synthesis: Present capabilities. Tech. Rep. DAI

43, Dep. Artificial Intelligence, Univ. Edinburgh, Edinburgh, Scotland, 1977; also appeared in
Artif. Intell. 16, 1 (March 1981}, 1-46.

10. DARLINGTON, J. A Semantic Approach to Automatic Program Improvement. Ph.D. dissertation,
Dep. Artificial Intelligence, Univ. Edinburgh, Edinburgh, Scotland, 1972.

11. DARLINGTON, J., AND BURSTALL, R.M. A system which automatically improves programs. Acta
Inf. 6, 1 (March 1976), 41-60.

12. FEATHER, M.S. Program specification applied to a text-formatter. Available from author;
submitted to IEEE Trans. Softw. Eng.

13. FEATHER, M.S. A System for Developing Programs by Transformation. Ph.D. dissertation, Dep.
Artificial Intelligence, Univ. Edinburgh, Edinburgh, Scotland, 1979.

14. FEATHER, M.S. Program transformation applied to the telegram problem. In Proc. 3d Int. Symp.
Programming, Paris, 1978, pp. 173-186.

15. FRIEDMAN, D.P., AND WISE, D.S. Functional combination. Comput. Lang. 3, 1 (Feb. 1978),
31-35.

16. HENDERSON, P., AND SNOWDON, R. An experiment in structured programming. BIT 12, 1 (1972),
38-53.

17. KERNmHAN, B.W., AND PLAUGER, P.J. Software Tools. Addison-Wesley, Reading, Mass., 1976.
18. KOTT, L. About a transformation system: A theoretical study. In Proc. 3d Int. Symp. Program-

ming, Paris, 1978, pp. 232-247.
19. LEE, S., DE ROEVER, W.P., AND GERHART, S.L. The evolution of list-copying algorithms and the

need for structured program verification. In Conf. Rec., 6th Ann. ACM Symp. Principles of
Programming Languages, San Antonio, Tex., Jan. 29-31, 1979, pp. 53-67.

20. MANNA, Z., AND WALDINGER, R. Synthesis: Dreams ~ programs. IEEE Trans. Softw. Eng.
SE-5, 4 (1979), 294-328.

21. MARTELLI, A. Program development through successive transformations: An application to list
processing. In Proc. 3d Int. Syrup. Programming, Paris, 1978, pp. 381-394.

22. PARTSCH, H., AND PEPPER, P. Program transformations on different levels of programming.
Tech. Rep. TUM-INFO-7715, Institut fiir Informatik, Technische Univ. Miinchen, 1977.

23. PETTOROSSI, A. Improving memory utilization in transforming recursive programs. In Proceed-
ings, 7th Symposium on Mathematical Foundations of Computer Science, Zakopane, Poland.
Springer-Verlag, New York, 1978, pp. 416-425.

24. PETTOROSSL A. Transformation of programs and use of "tupling strategy." Presented at Infor-
matica 77, Bled, Yugoslavia, 1977.

25. SCHWARZ, J. Verifying the safe use of destructive operations in applicative programs. In Proc.
3d Int. Symp. Programming, Paris, 1978, pp. 395-411.

26. TOPOR, R.W. Interactive Program Verification Using Virtual Programs. Ph.D. dissertation, Dep.
Artificial Intelligence, Univ. Edinburgh, Edinburgh, Scotland, 1975.

27. WEGBREIT, B. Goal-directed program transformation. IEEE Trans. Softw. Eng. SE-2, 2 (1976),
69-80.

Received August 1979; revised September 1980 and April 1981; accepted July 1981

ACM Transactions on Programming Langt,ages and Systems, Vol. 4, No. 1, January 1982.

